Indian Statistical Institute, Bangalore

B.Math (Hons.) I Year, Second Semester Backpaper Examination

Time: 3 hours Analysis II May 2012

Instructor: C.R.E.Raja Maximum marks: 50

Each question is worth 10 marks

- 1. Let (x_n) be a sequence in \mathbb{R}^m and $x_n(i)$ be the *i*-th co-ordinate of x_n .
 - (a) Prove that (x_n) converges if and only if $(x_n(i))$ converges for every *i*.
 - (b) If (x_n) is bounded, then show that (x_n) has a convergent subsequence.
- 2. Let (X, d) be a metric space.

(a) Prove that $|d(x,y) - d(a,b)| \le d(x,a) + d(b,y)$ for any $a, b, x, y \in X$.

(b) If (x_n) and (y_n) are Cauchy sequence in X, prove that $(d(x_n, y_n))$ converges in \mathbb{R} .

(c) If (K_n) is a decreasing sequence of compact sets in X with diam $(K_n) \not\rightarrow 0$, prove that $\cap K_n$ has at least two points.

- 3. (a) If $f:[a,b] \to \mathbb{R}$ is a continuous function, prove that $f \in \mathcal{R}[a,b]$. (b) Let $f:[0,\infty) \to [0,\infty)$ be a decreasing function. Prove that $\sum_{n=1}^{\infty} f(n)$ converges if and only if $\sup_{N} \int_{0}^{N} f < \infty$.
- 4. (a) Suppose a < c < b and $f \in \mathcal{R}[a, c]$ and $f \in \mathcal{R}[c, b]$. Show that $f \in \mathcal{R}[a, b]$. (b) Let $f \in \mathcal{R}[a, b]$ and define $g: [a, b] \to \mathbb{R}$ by g(a) = 0 and $g(x) = \int_a^x f$ for all $x \in (a, b]$. For any partition P of [a, b], define $\Delta(g, P) = \sum_{i=1}^n |g(x_i) - g(x_{i-1})|$ where $a = x_0 \le x_1 \le \cdots \le x_n = b$ is the partition P. Show that $\int_a^b |f(t)| dt = \sup\{\Delta(g, P) \mid P \text{ is any partition of } [a, b]\}$.
- 5. (a) Let E be an open set in Rⁿ and f: E → R be a function that has local maximum at some x ∈ E. If D_if exists on E, prove that D_if(x) = 0.
 (b) Let f and g be real-valued functions defined on R that have continuous second order derivatives. Define F: R² → R by F(x,y) = f(x + g(y)) for all (x, y) ∈ R². Find a formula for the first and second order partial derivatives of F in terms of the derivatives of f and g and verify the relation D₁FD_{1,2}F = D₂FD_{1,1}F. Is F differentiable?